Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667301

RESUMEN

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Asunto(s)
Antioxidantes , Cadmio , Chlorophyta , Zeatina , Cadmio/toxicidad , Zeatina/metabolismo , Zeatina/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Chlorophyta/efectos de los fármacos , Chlorophyta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Plant Physiol Biochem ; 209: 108526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537383

RESUMEN

Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.


Asunto(s)
Germinación , Transcriptoma , Germinación/genética , Sequías , Zeatina/metabolismo , Semillas/metabolismo , Metaboloma , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
3.
Org Biomol Chem ; 22(10): 2021-2026, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372990

RESUMEN

cis-Zeatin (cZ), a cytokinin often overlooked compared to trans-zeatin (tZ), can now be controlled in live cells and plants through a new biocompatible reaction. Using flavin photosensitizers, cZ can be isomerized to tZ or degraded, depending on the presence of a reducing reagent. This breakthrough offers a novel approach for regulating plant growth through chemical molecules.


Asunto(s)
Mononucleótido de Flavina , Zeatina , Zeatina/química , Zeatina/metabolismo , Mononucleótido de Flavina/metabolismo , Isomerismo , Citocininas
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003509

RESUMEN

Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Nitrógeno/metabolismo , Zeatina/metabolismo , Azúcares/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
5.
J Exp Bot ; 74(21): 6619-6630, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37668322

RESUMEN

Premature senescence is an important factor affecting wheat yield and quality. Wheat yield can be increased by delaying senescence and prolonging the effective photosynthetic time. Previously, we found that the cis-zeatin-O-glucosyltransferase (cZOGT1) gene plays an important role in the stay-green wheat phenotype. In this study, cZOGT1-overexpressing lines exhibited a delayed senescence phenotype, despite a significant reduction in the total cytokinin content. Further, we found that cZOGT1 interacted with the Ca2+-dependent lipid binding protein TaZIP (cZOGT1-interacting protein), and that a high level of cZOGT1 expression led to the suppression of TaZIP expression, which in turn, reduced abscisic acid (ABA) content. The synergistic reduction in cytokinins and ABA levels eventually caused the stay-green phenotype in cZOGT1-overexpressing lines. This study provides a new theoretical basis to explain the mechanism underlying the wheat stay-green phenotype and provides a genetic resource for wheat molecular-design breeding.


Asunto(s)
Triticum , Zeatina , Zeatina/metabolismo , Triticum/genética , Triticum/metabolismo , Calcio/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Citocininas/metabolismo , Ácido Abscísico/metabolismo , Lípidos
6.
Sci Rep ; 13(1): 11661, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468550

RESUMEN

Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.


Asunto(s)
Vicia faba , Cinetina/farmacología , Vicia faba/metabolismo , Zeatina/metabolismo , Plantones/metabolismo , Espectrometría de Masas en Tándem , Citocininas/metabolismo , Muerte Celular , Ácidos Indolacéticos
7.
Plant Physiol Biochem ; 198: 107683, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062127

RESUMEN

Heat stress is a frequent environmental constraint. Phytohormones can significantly affect plant thermotolerance. This study compares the effects of exogenous cytokinin meta-topolin-9-(tetrahydropyran-2-yl)purine (mT9THP) on rice (Oryza sativa) under control conditions, after acclimation by moderate temperature (A; 37 °C, 2h), heat stress (HS; 45 °C, 6h) and their combination (AHS). mT9THP is a stable cytokinin derivative that releases active meta-topolin gradually, preventing the rapid deactivation reported after exogenous cytokinin application. Under control conditions, mT9THP negatively affected jasmonic acid in leaves and abscisic and salicylic acids in crowns (meristematic tissue crucial for tillering). Exogenous cytokinin stimulated the emission of volatile organic compounds (VOC), especially 2,3-butanediol. Acclimation upregulated trans-zeatin, expression of stress- and hormone-related genes, and VOC emission. The combination of acclimation and mT9THP promoted the expression of stress markers and antioxidant enzymes and moderately increased VOC emission, including 2-ethylhexyl salicylate or furanones. AHS and HS responses shared some common features, namely, increase of ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), cis-zeatin and cytokinin methylthio derivatives, as well as the expression of heat shock proteins, alternative oxidases, and superoxide dismutases. AHS specifically induced jasmonic acid and auxin indole-3-acetic acid levels, diacylglycerolipids with fewer double bonds, and VOC emissions [e.g., acetamide, lipoxygenase (LOX)-derived volatiles]. Under direct HS, exogenous cytokinin mimicked some positive acclimation effects. The combination of mT9THP and AHS had the strongest thermo-protective effect, including a strong stimulation of VOC emissions (including LOX-derived ones). These results demonstrate for the first time the crucial contribution of volatiles to the beneficial effects of cytokinin and AHS on rice thermotolerance.


Asunto(s)
Oryza , Termotolerancia , Compuestos Orgánicos Volátiles , Citocininas/metabolismo , Oryza/metabolismo , Zeatina/metabolismo , Aclimatación , Expresión Génica
8.
Plant Physiol ; 192(3): 2457-2474, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36994817

RESUMEN

Cytokinins (CKs), a class of phytohormones with vital roles in growth and development, occur naturally with various side-chain structures, including N6-(Δ2-isopentenyl)adenine-, cis-zeatin- and trans-zeatin (tZ)-types. Recent studies in the model dicot plant Arabidopsis (Arabidopsis thaliana) have demonstrated that tZ-type CKs are biosynthesized via cytochrome P450 monooxygenase (P450) CYP735A and have a specific function in shoot growth promotion. Although the function of some of these CKs has been demonstrated in a few dicotyledonous plant species, the importance of these variations and their biosynthetic mechanism and function in monocots and in plants with distinctive side-chain profiles other than Arabidopsis, such as rice (Oryza sativa), remain elusive. In this study, we characterized CYP735A3 and CYP735A4 to investigate the role of tZ-type CKs in rice. Complementation test of the Arabidopsis CYP735A-deficient mutant and CK profiling of loss-of-function rice mutant cyp735a3 cyp735a4 demonstrated that CYP735A3 and CYP735A4 encode P450s required for tZ-type side-chain modification in rice. CYP735As are expressed in both roots and shoots. The cyp735a3 cyp735a4 mutants exhibited growth retardation concomitant with reduction in CK activity in both roots and shoots, indicating that tZ-type CKs function in growth promotion of both organs. Expression analysis revealed that tZ-type CK biosynthesis is negatively regulated by auxin, abscisic acid, and CK and positively by dual nitrogen nutrient signals, namely glutamine-related and nitrate-specific signals. These results suggest that tZ-type CKs control the growth of both roots and shoots in response to internal and environmental cues in rice.


Asunto(s)
Arabidopsis , Oryza , Citocininas/metabolismo , Zeatina/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
9.
Plant Physiol ; 192(1): 34-55, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789623

RESUMEN

While various labs had shown cell division-inducing activity in a variety of plant extracts for over a decade, the identification of zeatin (Z) in 1964, the first known naturally occurring cytokinin, belongs to Letham and co-workers. Using extracts from maize (Zea mays), they were the first to obtain crystals of pure Z and in sufficient quantity for structural determination by MS, NMR, chromatography, and mixed melting-point analysis. This group also crystallized Z-9-riboside (ZR) from coconut (Cocos nucifera) milk. However, their chemical contributions go well beyond the identification of Z and ZR and include two unambiguous syntheses of trans-Z (to establish stereochemistry), the synthesis of 3H-cytokinins that facilitated metabolic studies, and the synthesis of deuterated internal standards for accurate mass spectral quantification. Letham and associates also unequivocally identified Z nucleotide, the 7-and 9-glucoside conjugates of Z, and the O-glucosides of Z, ZR, dihydro Z (DHZ) and DHZR as endogenous compounds and as metabolites of exogenous Z. Their contributions to the role of cytokinins in plant physiology and development were also substantial, especially the role of cytokinins moving in the xylem. These biological advances are described and briefly related to the genetic/molecular biological contributions of others that established that plants have an absolute requirement for cytokinin.


Asunto(s)
Aniversarios y Eventos Especiales , Zeatina , Humanos , Zeatina/química , Zeatina/metabolismo , Zeatina/farmacología , Citocininas/metabolismo
10.
J Plant Physiol ; 280: 153879, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36516535

RESUMEN

Phytohormones are supposed to contribute to the establishment of mutualistic Arbuscular mycorrhiza (AM) symbioses. However, their role in the acclimation of micropropagated plantlet inoculated with AM is still unknown. To address this question, we performed a hormone profiling during the acclimation of Satureja khuzistanica plantlets inoculated with Rhizoglomus fasciculatum. The levels of indoleacetic acid (IAA), methyl indole acetic acid, cis-zeatin, cis zeatin ribose, jasmonate, jasmonoyl isoleucine, salicylic acid, abscisic acid (ABA) were analyzed. Further, the relative gene expression of AOS (Allene oxide synthase) as a key enzyme of jasmonate biosynthesis, in either inoculated or non-inoculated micropropagated plantlets was evaluated during acclimation period. The concentrations of IAA and cis-zeatin increased in the plantlets inoculated by AM whereas the concentration of ABA decreased upon 60 days acclimation in the whole shoot of plantlets of S. khuzistanica. The relative expression of AOS gene resulted in an increase of isoleucine jasmonate, the bioactive form of jasmonate. Based on our results, IAA and cis-zeatin probably contribute to maintaining growth, and AM reduces transition stress by modifying ABA and jasmonate concentrations.


Asunto(s)
Micorrizas , Satureja , Micorrizas/metabolismo , Satureja/metabolismo , Zeatina/metabolismo , Isoleucina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Hormonas/metabolismo
11.
Protoplasma ; 260(1): 237-248, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35579760

RESUMEN

We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased. In dormant spruce pollen grains, zeatin and ABA were localized uniformly throughout the cytoplasm. Zeatin was not detected in the nuclei, and the antheridial cell showed higher levels than the vegetative cell; ABA signal was detected in the cytoplasm and the nuclei. In germinating pollen, both hormones were detected mainly in plastids. The similar pattern was found in growing pollen tubes; signal from ABA also had a noticeable level in the cytosol of the tube cell, and was weaker in the antheridial cell. Zeatin fluorescence, on the other hand, was more pronounced in the antheridial cell. In non-germinated grains of tobacco, zeatin was localized mainly in organelles. ABA in dormant pollen grains demonstrated uniform localization, including the nuclei and cytoplasm of both cells. After germination, zeatin was accumulated in the plasmalemma or cell wall. ABA signal in the cytoplasm decreased; in the nuclei, it remained high. In growing tubes, the strongest zeatin and ABA signals were observed at the plasma membrane. The differences in ABA and cytokinin localization between species and dynamic changes in their level in spruce pollen highlight the key spatial and temporal parameters of hormonal regulation of gymnosperm pollen germination.


Asunto(s)
Citocininas , Nicotiana , Citocininas/metabolismo , Nicotiana/metabolismo , Polen , Tubo Polínico , Zeatina/metabolismo , Hormonas/metabolismo , Germinación/fisiología
12.
PLoS One ; 17(10): e0275566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36197881

RESUMEN

miRNAs play a crucial role in the development and growth of plants by inhibiting the function of targeted genes at the post-transcription level. However, no miRNAs in Pseudostellaria heterophylla have been reported and their function in the morphogenesis of organs is still unclear. In this study, a total of 159 conserved miRNAs (belonging to 64 families) and 303 level miRNAs were identified from P. heterophylla. Some of them showed specifically up or down-regulated expression in different tissues and numbers of unigenes involved in Plant-pathogen interaction and MAPK signaling pathway-plant were targeted. The significant negative correlation of expression profiles between 30 miRNAs and their target genes (37 unigenes) was observed, respectively. Further, a large number of genes involved with signal transduction of auxin, zeatin, abscisic acid and, jasmonic acid were targeted. Predicated targets of two miRNAs were validated by 5'RLM-RACE, respectively. A large number of mRNAs from four pathogens were targeted by miRNAs from P. heterophylla and some of them were targeted by miR414. In summary, we reported a population of miRNAs from four different vegetative tissues of P. heterophylla by high throughput sequencing, which was analyzed by combining with the constructed transcriptome. These results may help to explain the function of miRNAs in the morphogenesis of organs and defense of pathogens, and may provide theoretical basis for breeding and genetic improvement of P. heterophylla.


Asunto(s)
Caryophyllaceae , MicroARNs , Ácido Abscísico/metabolismo , Caryophyllaceae/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fitomejoramiento , Hojas de la Planta/genética , Raíces de Plantas/metabolismo , Zeatina/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3749-3755, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850831

RESUMEN

Lonicera japonica is a ubiquitous medicinal species in China.Winter pruning has long been used to improve its quality and yield, but the mechanism is rarely studied.Therefore, in this study, the growth phenotypes of L.japonica processed with different pruning methods were observed and the yield-and quality-boosting mechanism of pruning was analyzed.Specifically, the young shoots of the three-year old L.japonica were cut to different degrees(heavy pruning, mild pruning, and no pruning, respectively) in winter in 2020 and 2021, respectively, and the growth phenotypes, hormone content, and gene expression of the lateral buds at the sprouting stage and young shoots at the anthesis stage in the next year were analyzed.The result showed that the length, flower bud number, internode length, and node number of young shoots in the next year were in the order of heavy pruning>mild pruning>no pruning.The content of auxin and zeatin in apical buds of young shoots at the anthesis stage was the highest in the heavy pruning group, followed by the mild pruning group, and coming in the third was the no pruning group.The content of auxin and zeatin in lateral buds at the sprouting stage was in the order of no pruning>mild pruning>heavy pruning.Transcriptome analysis of the lateral buds at sprouting stage yielded the differentially expressed genes related to auxin and cytokinin, such as Lj1A1163T36, Lj3A719T115, Lj7C657T7, Lj9C505T15, and Lj9A505T70.In conclusion, the growth phenotypes of young shoots of L.japonica processed with different pruning methods in winter were related to the difference in hormone content in the apical buds.Therefore, winter pruning influenced the content of auxin and cytokinin in new shoots of L.japonica and further regulated the expression of hormone-related genes, thereby promoting shoot growth and increasing the yield of L.japonica.


Asunto(s)
Lonicera , Reguladores del Crecimiento de las Plantas , Citocininas/genética , Citocininas/metabolismo , Flores/genética , Flores/metabolismo , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Lonicera/genética , Lonicera/metabolismo , Brotes de la Planta/genética , Zeatina/metabolismo
14.
Plant Sci ; 321: 111326, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696926

RESUMEN

Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV. Their effects on leaf metabolites were determined using untargeted metabolomics. Blue and white growth light triggered increased levels of compounds related to primary and secondary metabolism, including amino acids, phenolics, hormones, and compounds related to sugar metabolism and the TCA cycle. In contrast, supplementary UV in a blue or white light background decreased leaf content of amino acids, phenolics, sugars, and TCA-related compounds, without affecting abscisic acid, auxin, zeatin, or jasmonic acid levels. However, in plants grown under green light, UV induced increased levels of phenolics, hormones (auxin, zeatin, dihydrozeatin-7-N-dihydrozeatin, jasmonic acid), amino acids, sugars, and TCA cycle-related compounds. Plants grown under red light with UV mainly showed decreased sugar content. These findings highlight the importance of the blue light component for metabolite accumulation. Also, data on interactions of UV with green light on the one hand, and blue or white light on the other, further contributes to our understanding of light quality regulation of plant metabolism.


Asunto(s)
Cucumis sativus , Aminoácidos/metabolismo , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/metabolismo , Azúcares/metabolismo , Rayos Ultravioleta , Zeatina/metabolismo
15.
Appl Environ Microbiol ; 88(6): e0216021, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108066

RESUMEN

Phloroglucinol improves shoot formation and somatic embryogenesis in several horticultural and grain crops, but its function in microalgae remains unclear. Here, we found that sufficiently high concentrations of phloroglucinol significantly increased fucoxanthin synthesis, growth, and photosynthetic efficiency in the microalga Thalassiosira pseudonana. These results suggested that the role of phloroglucinol is conserved across higher plants and microalgae. Further analysis showed that, after phloroglucinol treatment, the contents of cis-zeatin and brassinolide in T. pseudonana increased significantly, while the contents of trans-zeatin, N6-isopentenyladenine (iP), auxin, and gibberellin were unaffected. Indeed, functional studies showed that the effects of cis-zeatin and brassinolide in T. pseudonana were similar to those of phloroglucinol. Knockout of key enzyme genes in the cis-zeatin synthesis pathway of T. pseudonana or treatment of T. pseudonana with a brassinolide synthesis inhibitor (brassinazole) significantly reduced growth and fucoxanthin content in T. pseudonana, and phloroglucinol treatment partially alleviated these inhibitory effects. However, phloroglucinol treatment was ineffective when the cis-zeatin and brassinolide pathways were simultaneously inhibited. These results suggested that the cis-zeatin and brassinolide signaling pathways are independent regulators of fucoxanthin synthesis in T. pseudonana and that phloroglucinol affects both pathways. Thus, this study not only characterizes the mechanism by which phloroglucinol promotes fucoxanthin synthesis but also demonstrates the roles of cis-zeatin and brassinolide in T. pseudonana. IMPORTANCE Here, we demonstrate that phloroglucinol, a growth promoter in higher plants, also increases growth and fucoxanthin synthesis in the microalga Thalassiosira pseudonana and therefore may have substantial practical application for industrial fucoxanthin production. Phloroglucinol treatment also induced the synthesis of cis-zeatin and brassinolide in T. pseudonana, and the cis-zeatin and brassinolide signaling pathways were implicated in the phloroglucinol-driven increases in T. pseudonana growth and fucoxanthin synthesis. Thus, our work clarified the molecular mechanism of phloroglucinol promoting the growth and fucoxanthin synthesis of Thalassiosira pseudonana and suggested that cis-zeatin and brassinolide, in addition to phloroglucinol, have potential utility as inducers of increased microalgal fucoxanthin production.


Asunto(s)
Diatomeas , Zeatina , Brasinoesteroides , Floroglucinol/metabolismo , Esteroides Heterocíclicos , Xantófilas , Zeatina/metabolismo , Zeatina/farmacología
16.
PLoS One ; 15(10): e0240355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33044982

RESUMEN

Kiwifruit (Actinidia chinensis) is a rich nutritious fruit crop owing to a markedly higher content of vitamin C and minerals. To promote fruit set and to increase the yield of kiwifruit, forchlorfenuron (CPPU) has been widely applied. However, the molecular details regarding CPPU controlling kiwifruit development, especially at the fastest fruit growth stage, remain unknown. In the present study, we measured the effect of CPPU on developmental regulation in red-fleshed kiwifruit (Actinidia chinensis 'Hongyang'). Additionally, a cytological analysis was performed to clarify the precise changes in the cell structure of the CPPU-treated kiwifruits. Moreover, the concentration of endogenous phytohormones, including indoleacetic acid (IAA), zeatin (ZT), gibberellic acid 3 (GA3), and abscisic acid (ABA), were measured by Enzyme-linked Immunosorbent Assay (ELISA). Furthermore, RNA-Seq was performed to dissect the complicated molecular mechanisms, with a focus on biosynthesis, metabolism, and signaling compounds, such as endogenous hormones, sugars, and L-ascorbic acid. Our results demonstrated that CPPU treatment not only regulates the size and weight of a single fruit but also improves the quality in 'Hongyang' kiwifruit through the accumulation of both soluble sugar and vitamin C. It was also seen that CPPU regulates kiwifruit development by enhancing cell expansion of epidermal cells and parenchyma cells, while, promoting cell division of subepidermal cells. Additionally, CPPU significantly increased the gibberellin and cytokinin biosynthetic pathway and signaling, while repressing auxin and ABA biosynthetic pathway; thus, signaling plays an essential role in CPPU controlling kiwifruit development. Notably, transcriptomic analysis revealed that a total of 2244 genes, including 352 unannotated genes, were differentially expressed in kiwifruits because of CPPU treatment, including 127 transcription factors. These genes are mainly enriched in plant hormone signal transduction, photosynthesis, MAPK signaling pathway, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Overall, our results highlight that CPPU regulation of kiwifruit development is mainly associated with an antagonistic and/or synergistic regulatory role of endogenous phytohormones, and enhancing the energy supply. This provides new insights into the molecular details of CPPU controlling kiwifruit development at the fastest fruit growth stage, which is of agricultural importance for kiwifruit breeding and crop improvement.


Asunto(s)
Actinidia/crecimiento & desarrollo , Vías Biosintéticas , Perfilación de la Expresión Génica/métodos , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Actinidia/genética , Actinidia/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia de ARN , Zeatina/metabolismo
17.
BMC Genomics ; 21(1): 609, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891118

RESUMEN

BACKGROUND: Phytohormones are the key factors regulating vascular development in plants, and they are also involved in tension wood (TW) formation. Although the theory of hormone distribution in TW formation is widely supported, the effects of endogenous hormones on TW formation have not yet been assessed. In this study, TW formation was induced in Catalpa bungei by artificial bending. The phytohormone content of TW, opposite wood (OW) and normal wood (NW) was determined using liquid chromatography-mass spectrometry (LC-MS), and transcriptome sequencing was performed. The hormone content and related gene expression data were comprehensively analyzed. RESULTS: The results of analyses of the plant hormone contents indicated significantly higher levels of cis-zeatin (cZ), indoleacetic acid (IAA) and abscisic acid (ABA) in TW than in OW. Genes involved in the IAA and ABA synthesis pathways, such as ALDH (evm. MODEL: group5.1511) and UGT (evm. MODEL: scaffold36.20), were significantly upregulated in TW. and the expression levels of ARF (evm. MODEL: group5.1332), A-ARR (evm. MODEL: group0.1600), and TCH4 (evm. MODEL: group2.745), which participate in IAA, cZ and Brassinolide (BR) signal transduction, were significantly increased in TW. In particular, ARF expression may be regulated by long noncoding RNAs (lncRNAs) and the HD-ZIP transcription factor ATHB-15. CONCLUSIONS: We constructed a multiple hormone-mediated network of C. bungei TW formation based on hormone levels and transcriptional expression profiles were identified during TW formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lamiales/genética , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Xilema/genética , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Lamiales/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Xilema/crecimiento & desarrollo , Zeatina/metabolismo
18.
Plant Cell Environ ; 43(11): 2637-2649, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32716064

RESUMEN

Recently, a novel type of abiotic stress caused by a prolongation of the light period-coined photoperiod stress-has been described in Arabidopsis. During the night after the prolongation of the light period, stress and cell death marker genes are induced. The next day, strongly stressed plants display a reduced photosynthetic efficiency and leaf cells eventually enter programmed cell death. The phytohormone cytokinin (CK) acts as a negative regulator of this photoperiod stress syndrome. In this study, we show that Arabidopsis wild-type plants increase the CK concentration in response to photoperiod stress. Analysis of cytokinin synthesis and transport mutants revealed that root-derived trans-zeatin (tZ)-type CKs protect against photoperiod stress. The CK signalling proteins ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 2 (AHP2), AHP3 and AHP5 and transcription factors ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), ARR10 and ARR12 are required for the protective activity of CK. Analysis of higher order B-type arr mutants suggested that a complex regulatory circuit exists in which the loss of ARR10 or ARR12 can rescue the arr2 phenotype. Together the results revealed the role of root-derived CK acting in the shoot through the two-component signalling system to protect from the negative consequences of strong photoperiod stress.


Asunto(s)
Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/fisiología , Zeatina/fisiología , Arabidopsis/metabolismo , Clorofila/metabolismo , Fotoperiodo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico/fisiología , Zeatina/metabolismo
19.
Sci Rep ; 10(1): 9680, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541892

RESUMEN

Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.


Asunto(s)
Crocus/fisiología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Crocus/genética , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zeatina/metabolismo
20.
Chemosphere ; 256: 127157, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32470740

RESUMEN

Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA), Zeatin (ZT) and gibberellin (GA3) as well as hormone balances (IAA/ABA, ZT/ABA and GA/ABA) to cyanobacterial extract containing microcystins (1, 10, 100 and 1000 µg/L) during stress and recovery periods. Low concentration microcystins (1 µg/L) promoted growth of rice seedlings by increasing levels of IAA, ZT and GA3 and maintaining hormone balances. In addition, the up-regulation of OsYUCCA1 increased IAA level in rice roots by promoting IAA biosynthesis. High concentrations microcystins (10, 100 or1000 µg/L) inhibited growth of rice seedlings by reducing levels of IAA, ZT and GA3 and ratios of IAA/ABA, ZT/ABA and GA/ABA due to increased ABA level. The increase in ABA in rice seedlings induced by high concentrations MCs was resulted from up-regulation of OsNCED1, OsNCED3, OsNCED4 and OsZEP to enhance ABA biosynthesis, and was controlled by up-regulating expression levels of OsABAox1-3 for enhancing ABA catabolism as negative feedback. The highest concentration of MCs (1000 µg/L) caused irreversible damage to metabolisms of IAA and ABA, partly resulting in unrecoverable inhibition on rice growth. All results demonstrate that "low-concentration promotion and high-concentration inhibition" of microcystins was associated with changes in hormone levels and balances by affecting their metabolisms, and could be helpful for guiding agricultural irrigation with microcystin contaminated water.


Asunto(s)
Cianobacterias/metabolismo , Microcistinas/toxicidad , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/microbiología , Extractos Vegetales , Raíces de Plantas/metabolismo , Zeatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA